Respuesta :
Answer:
a)Clâ is the limiting reaction
b) Maximum amount of AlClâ = 0.45g
Explanation:
2Al(s) + 3Cl2(g) â 2AlCl3(s)
54g    212.72g    266.7g
0.64g   0.36     Â
a) 54g Al ------------ 212.72g Â
  0.64g ------------- ?
mass of clâ required
[tex]= \frac{0.64 \times 212.72 }{54} \\\\= 2.52g[/tex]
we have 0.36g Clâ, so Clâ is the limiting reaction
b)
212.72g Clâ---------- 266.7g AlClâ
0.36g Clâ Â ----------- ?
mass of AlClâ =
[tex]\frac{0.36 \times 266.7 }{212.72} \\\\= 0.45g[/tex]
Maximum amount of AlClâ = 0.45g
Answer:
a) Limiting reactant: Clâ
b) 0.45 g    Â
Explanation:
(a) The balanced equation is:
2Al(s) + 3Clâ(g) â Â 2AlClâ(s) Â Â (1)
0.64g   0.36g    Â
To find the limiting reactant we need to calculate the number of moles of Al and Clâ:
[tex] \eta_{Al} = \frac{m}{M} [/tex] Â Â Â
where m: is the mass and M: is the molar mass
[tex] \eta_{Al} = \frac{0.64}{27 g/mol} = 0.024 moles [/tex]
Similarly, for Clâ we have: Â Â Â Â
[tex] \eta_{Cl_{2}} = \frac{m}{M} = \frac{0.36 g}{(35.45 g/mol)*2} = 5.07 \cdot 10^{-3} moles [/tex]
From equation (1) we have that 2 moles of Al reacts with 3 moles of Clâ, hence, we can find the number of moles of Al that reacts with Clâ as follows:
2 moles Al     â  3 moles Clâ
0.024 moles Al â Â x
[tex] x = \frac{0.024 moles Al*3 moles Cl_{2}}{2 moles Al} = 0.036 moles Cl_{2} [/tex] Â Â Â
Hence, we need 0.036 moles of Clâ to react with Al, and we have 5.07x10â»Âł moles, so, the limiting reactive is Clâ since Al is in excess. Â
(b) The maximum amount of AlClâ in grams that can be produced can be calculated using the limiting reactant, that is to say, Clâ: Â
From equation (1) we have that 3 moles of Clâ produces 2 moles of AlClâ, therefore the moles of AlClâ are:
[tex]\eta_{AlCl_{3}} = \frac{2 moles AlCl_{3}*5.07 \cdot 10^{-3} moles Cl_{2}}{3 moles Cl_{2}} = 3.38 \cdot 10^{-3} moles[/tex] Â Â
Finally, the mass of AlClâ is:
[tex]m = mol*M = 3.38 \cdot 10^{-3} moles*133.5g/mol = 0.45 g[/tex]
Therefore, the maximum amount of AlClâ that can be produced is 0.45 g.
I hope it helps you!