Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{3}{x \ln x^3}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \ln (\ln x^3)[/tex]

Step 2: Differentiate

  1. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle y' = \frac{1}{\ln x^3} \cdot \frac{d}{dx}[\ln x^3][/tex]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle y' = \frac{1}{\ln x^3} \cdot \frac{1}{x^3} \cdot \frac{d}{dx}[x^3][/tex]
  3. Basic Power Rule:                                                                                         [tex]\displaystyle y' = \frac{1}{\ln x^3} \cdot \frac{1}{x^3} \cdot 3x^2[/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle y' = \frac{3}{x \ln x^3}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation