Which is an exponential decay function?

f(x)= 3/4(7/4)^x
f(x)= 2/3(4/5)^-x
f(x)=3/2(8/7)^-x
f(x)=1/3(-9/2)^x​

Respuesta :

Answer:

[tex]f(x)=\frac{3}{4}(\frac{7}{4})^x[/tex]

[tex]f(x)=\frac{3}{2}(\frac{8}{7})^{-x}[/tex]

Step-by-step explanation:

An exponential decay function is of the form:

[tex]f(x)=ab^x[/tex], where [tex]0\:<\:b\:<\:1[/tex].

Or [tex]f(x)=ab^{-x}[/tex], where [tex]|b|\:>\:1[/tex]

The coefficient 'a' can be any non-zero real number.

[tex]f(x)=\frac{3}{4}(\frac{7}{4})^x[/tex] is an exponential decay function, because it meets our first definition.

[tex]f(x)=\frac{2}{3}(\frac{4}{5})^{-x}[/tex], is not an exponential decay function.

[tex]f(x)=\frac{3}{2}(\frac{8}{7})^{-x}[/tex], is an exponential decay function, because it meets our second definition.

[tex]f(x)=\frac{1}{3}(-\frac{9}{2})^x[/tex] is also NOT an exponential decay function.

Answer:

the answer is C

Step-by-step explanation:

i took the test