Respuesta :
Answer:
The test statistic  t = 1.219 < 2.262 at 5% level of significance
we accept significance of  level that the population mean is less than 20.
Step-by-step explanation:
Given ages are 22, 17, 27, 20, 23, 19, 24, 18, 19, and 24
The random sample (n) = 10
Null hypothesis (H0): μ = 20
Alternative hypothesis(H1) : μ < 20 (left tailed test)
we will use statistic 't' distribution with small sample 10 < 30
[tex]t = \frac{χ-μ}{\frac{S.D}{\sqrt{n-1} } }[/tex]
mean (χ) = sum of observations divided by no of observations
mean(x) = ∑x / n = [tex]\frac{22+17+27+20+23+19+24+18+19+24}{10} = 21.3[/tex]
x     x - mean      (x-mean)^2
22 Â Â Â 22-21.3 Â = Â 0.7 Â Â Â 0.49
17 Â Â Â 17-21.3 Â Â = -4.3 Â Â Â 18.49
27 Â Â Â 27-21.3 = 5.7 Â Â Â Â 32.49
20 Â Â Â 20-21.3 =-1.3 Â Â Â Â Â 1.69
23 Â Â Â 23-21.3 = 1.7 Â Â Â Â Â 2.89
19 Â Â Â 19-21.3 = -2.3 Â Â Â Â 5.29
24 Â Â Â 24-21.3 = 2.7 Â Â Â 7.29
18 Â Â Â Â 18-21.3 = -3.3 Â Â Â 10.89
19 Â Â Â Â 19-21.3 = -2.3 Â Â Â 5.29
24 Â Â Â 24-21.3 = -=2.7 Â Â 7.29
                  [tex]S^{2} = \frac{∑(x-mean)^2}{n-1}= \frac{92.1}{10-1}[/tex]
                  [tex]S^{2} = \frac{92.1}{9} = 10.2[/tex]
                 S = 3.198
The test statistic (t) = [tex]t = \frac{21.3-20}{\frac{3.198}{\sqrt{10-1} } }[/tex]
              t = 1.219
The degrees of freedom = n-1 = 10-1 =9
Tabulated value of t for 9 degrees of freedom at 5% level of significance
= 2.262
since calculated t < tabulated t we accept the null hypothesis
we accept significance of  level that the population mean is less than 20.