Respuesta :
Answer: B=1.92nT
Explanation:This question uses the Biot-Savart law: the law is an equation that describes the magnetic field created by a current-carrying wire, and allows you to calculate its strength at various points.
B=(μ0/4*π)*q*v*r(unit vector)/r²
Also:
B=(μ0/4*π)*q*v*sin(θ)/r²
Where;
μ0 =permeability of free space = 4πx10-7 Hm-1
B = magnetic field in Tesla
V= velocity
r= radius
Therefore:
B=(4πx10-7/4*π)*q*v*sin(θ)/r^2
B=1x10-7*q*v*sin(θ)/r^2
Using:
q=15x10-3C
v=40m/s
tan(θ)=5/2 so θ=68.2°
r²=5²+2² (Pythagoras Theorem)
B can be calculated as:
B=1x10-7*15x10-3*40*sin(68.2)/(5²+2²)
B=1.92nT
Answer:
2.7 PT
Explanation:
Given that;
Charge (q) = 15 μC = [tex]15*10^{-6} C[/tex]
Velocity (V) = - 40 m/s
Position vector = 2 m î + 5 m î
Magnitude of the position vector |r| = [tex]\sqrt{(2^2)+(5^2)}[/tex] = 5.385
Angle Cos θ = [tex]\frac{v r}{|v||r|} = \frac{-40*(2i + 5j)}{40*5.385}[/tex]
= [tex]\frac{-80}{215.4}[/tex]
Cos θ = - 0.3714
θ = Cos ⁻¹ (0.3714)
θ = 111.80°
Magnitude field (B) at the origin
B = [tex]\frac{\mu q V sin \theta}{4 \pi r^2}[/tex]
B = [tex]\frac{(4 \pi *10^{-7}*15*10^{-6}*40*sin(111.80^0)}{4 \pi *(5.385)^2}[/tex]
B = [tex]2.685 *10^{-12}T[/tex]
B = 2.7 PT