Answer:
Part a)
Velocity of the box is 0.74 m/s
Part b)
Maximum speed of the box is 0.93 m/s
Explanation:
Part a)
We can use the work energy theorem here to find the speed of the box
Now we can say that
work done by friction + work done by spring = change in kinetic energy
so we will have
[tex]-\mu mgx + \frac{1}{2}kx^2 = \frac{1}{2}mv^2[/tex]
now we have
[tex]-(0.300)(1.60)(9.81)(0.280) + \frac{1}{2}(45)(0.280^2) = \frac{1}{2}(1.60) v^2[/tex]
now we have
[tex]-1.32 + 1.76 = 0.8 v^2[/tex]
[tex]v = 0.74 m/s[/tex]
Part b)
When box will reach to the mean position then it will have maximum speed
so we have
[tex]\mu m g = kx[/tex]
[tex]0.300(1.60)(9.81) = 45 x[/tex]
[tex]x = 0.105 m[/tex]
now we can use work energy theorem
[tex]-\mu mg(x_1 - x_2) + \frac{1}{2}k(x_1^2 - x_2^2)= \frac{1}{2}mv^2[/tex]
[tex]-0.300(1.60)(9.81)(0.280 - 0.105) + \frac{1}{2}(45)(0.280^2 - 0.105^2) = \frac{1}{2}(1.6)v^2[/tex]
[tex]-0.825 + 1.516 = 0.8 v^2[/tex]
[tex]v = 0.93 m/s[/tex]