Energy is required to move a 1450 kg mass from the Earth’s surface to an altitude 2.38 times the Earth’s radius RE. What amount of energy is required to accomplish this move? The acceleration of gravity near the Earth is9.8 m/s 2 , the mass of the Earth is 5.98 × 1024 kg , and the radius of the Earth is 6.37 × 106 m . Answer in units of J.

Respuesta :

Answer:

E = 1.77*10^11 [J]

Explanation:

We can solve this problem by using the definition of potential energy which tells us that potential energy is equal to the product of mass by gravity by height.

E_{p}=m*g*h

where:

m = mass = 1450[kg]

g = gravity = 9.81[m/s^2]

h = elevation = 2.38 * (6.37 × 10^6) = 15.16*10^6 [m]

[tex]E_{p}=1450*9.81*(15.16*10^6)\\E_{p}=2.156*10^{11}[J][/tex]

The total energy will be equal to that potential energy minus the energy exerted by the force of gravity.

[tex]F_{G}=6.67*10^{-11} *\frac{1450*5.98*10^{24} }{(15.16*10^{6})x^{2} } \\F_{G}= 2516.5 [N]\\[/tex]

The work done by the gravity force:

W =FG * d

W = 2516.5 * (15.16*10^6)

W = 3.815*10^10 [J]

The energy will be:

E = (2.156*10^11 ) - (3.815*10^10)

E = 1.77*10^11 [J]

The required amount of energy would be "4.01 × 10¹⁰ J".

Gravitational force

According to the question,

Mass of earth, M = 5.98 × 10²⁴ kg

Radius of earth, [tex]R_E[/tex] = 6.37 × 10⁶ m

Acceleration due to gravity, g = 9.8 m/s

At surface,

→ [tex]E_i[/tex] = [tex]-\frac{GMm}{R_E}[/tex]

Now, at the altitude when h = 1.84 [tex]R_E[/tex]

→ [tex]E_f[/tex] = [tex]- \frac{GMm}{h+R_E}[/tex]

By substituting the values,

       = [tex]- \frac{GMm}{1.84 \ R_E+R_E}[/tex]

       = [tex]- \frac{GMm}{R_E}[/tex]

hence,

The required energy be:

→ ΔE = [tex]E_f[/tex] - [tex]E_i[/tex]

        = [tex]- \frac{GMm}{2.84 \ R_E} -(- \frac{GMm}{R_E} )[/tex]

        = [tex]\frac{GMm}{R_E}[1-\frac{1}{2.84} ][/tex]

        = [tex]\frac{G(5.98\times 10^{24})(989)}{6.37\times 10^6} [1-\frac{1}{2.84} ][/tex]

        = 4.01 × 10¹⁰ J  

Thus the above approach is correct.

Find out more information about gravitational force here:

https://brainly.com/question/19050897