HELPPP ASAPPP!! 50 POINTS!!!
The following graph shows a seventh-degree polynomial: Part 1: List the polynomial’s zeroes with possible multiplicities.
Part 2: Write a possible factored form of the seventh-degree function. Graph is the link below.
https://docs.google.com/document/d/1CoB9wUiDCZkIijSW9uhSt7TJVNvZOMd7uZJ-iuEqLsE/edit?usp=sharing

Respuesta :

Answer:

Part 1)

The possible multiplicities are:

[tex]x=-7[/tex] multiplicity 1

[tex]x=-3[/tex] multiplicity 3

[tex]x=2[/tex] multiplicity 1

[tex]x=5[/tex] multiplicity 2

Part 2

The factored form is

[tex]p(x)=(x+7)(x+3)^3(x-2)(x-5)^2[/tex]

Step-by-step explanation:

Part 1.

The missing diagram is shown in the attachment.

The zeroes of the seventh degree polynomial are the x-intercepts of the graph.

From the graph, we have x-intercepts at:

[tex]x=-7[/tex], [tex]x=-3[/tex],   [tex]x=2[/tex], and [tex]x=5[/tex].

The multiplicities tell us how many times a root repeats.

Also, even multiplicities will not cross their x-intercept, while odd multiplicities cross their x-intercepts.

The possible multiplicities are:

[tex]x=-7[/tex] multiplicity 1

[tex]x=-3[/tex] multiplicity 3

[tex]x=2[/tex] multiplicity 1

[tex]x=5[/tex] multiplicity 2

Note that the total multiplicity must equate the degree.

Part 2)

According to the factor theorem, if [tex]x=a[/tex] is a zero of p(x), then [tex](x-a)[/tex] is a factor.

Using the multiplicities , we can write the factors as:

[tex]x+7[/tex]

[tex](x+3)^3[/tex]

[tex](x-2)^1[/tex]

[tex](x-5)^2[/tex]

Therefore the completely factored form of this seventh degree polynomial is [tex]p(x)=(x+7)(x+3)^3(x-2)(x-5)^2[/tex]

Ver imagen kudzordzifrancis