Respuesta :

Step-by-step explanation:

Given the Arithmetic sequence

[tex]-7, -3, 1, 5, . . .[/tex]

An arithmetic sequence has a constant difference d and is defined by

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]\mathrm{Compute\:the\:differences\:of\:all\:the\:adjacent\:terms}:\quad \:d=a_{n+1}-a_n[/tex]

[tex]-3-\left(-7\right)=4,\:\quad \:1-\left(-3\right)=4[/tex]

[tex]\mathrm{The\:difference\:between\:all\:of\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}[/tex]

[tex]d=4[/tex]

[tex]\mathrm{The\:first\:element\:of\:the\:sequence\:is}[/tex]

[tex]a_1=-7[/tex]

as

[tex]a_n=a_1+\left(n-1\right)d[/tex]

[tex]\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:[/tex]

[tex]a_n=4\left(n-1\right)-7[/tex]           ∵ [tex]d=4[/tex]

[tex]\mathrm{Arithmetic\:sequence\:sum\:formula:}[/tex]

[tex]n\left(a_1+\frac{d\left(n-1\right)}{2}\right)[/tex]

[tex]\mathrm{Plug\:in\:the\:values:}[/tex]

[tex]n=30,\:\space a_1=-7,\:\spaced=4[/tex]

[tex]=30\left(-7+\frac{4\left(30-1\right)}{2}\right)[/tex]

[tex]=30\left(58-7\right)[/tex]     ∵  [tex]\frac{4\left(30-1\right)}{2}=58[/tex]

[tex]=30\cdot \:51[/tex]

[tex]=1530[/tex]           ∵  [tex]\mathrm{Multiply\:the\:numbers:}\:30\cdot \:51=1530[/tex]

Therefore, the indicated nth partial sum of the arithmetic sequence is 1530.

ANOTHER METHOD

as

[tex]a_n=4\left(n-1\right)-7[/tex]

n = 30

[tex]\sum _{n=1}^{30}\:4\left(n-1\right)-7[/tex]

[tex]=\sum _{n=1}^{30}4n-11[/tex]

[tex]\mathrm{Apply\:the\:Sum\:Rule}:\quad \sum a_n+b_n=\sum a_n+\sum b_n[/tex]

[tex]=\sum _{n=1}^{30}4n-\sum _{n=1}^{30}11[/tex]

as

[tex]\sum _{n=1}^{30}4n=1860[/tex]

and

[tex]\sum _{n=1}^{30}11=330[/tex]

so

[tex]=1860-330[/tex]

[tex]=1530[/tex]