Inequalities
Solve the inequality 10% < 2 + 2( - 3.+ 31). Write your answer as an inequality and in interval
notation, then graph the solution set on the number line.
For Graphing: If the symbol in the inequality is < or > , use an open circle. If the symbol in the
inequality is < or >, use a closed circle.
Inequality: 10x < 2 + 2( - 3x + 31)
Inequality Notation
Graph
Interval Notation
10
5
Preview
-5 0
Clear All Draw: 7
Preview
.
Get help: Video

Inequalities Solve the inequality 10 lt 2 2 3 31 Write your answer as an inequality and in interval notation then graph the solution set on the number line For class=

Respuesta :

Answer:

Inequality notation:      [tex]x<4\:[/tex]

Interval Notation: [tex]\left(-\infty \:,\:4\right)[/tex]

The graph of the solution set on the number line is also attached below.

Step-by-step explanation:

Given the inequality

[tex]10x<2+2\left(-3x+31\right)[/tex]

[tex]10x<-6x+64[/tex]     ∵ [tex]\mathrm{Expand\:}2+2\left(-3x+31\right):\quad -6x+64[/tex]

[tex]\mathrm{Add\:}6x\mathrm{\:to\:both\:sides}[/tex]

[tex]10x+6x<-6x+64+6x[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]16x<64[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}16[/tex]

[tex]\frac{16x}{16}<\frac{64}{16}[/tex]

[tex]x<4[/tex]

so

  • Inequality notation:      [tex]x<4\:[/tex]
  • Interval Notation: [tex]\left(-\infty \:,\:4\right)[/tex]

Therefore,

[tex]10x<2+2\left(-3x+31\right)\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<4\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:4\right)\end{bmatrix}[/tex]

The graph of the solution set on the number line is also attached below.

Ver imagen SaniShahbaz