Media aritmetica a 3 nr este 24 . Al doilea numar e cu 50% mai mare decat primul iar al treilea este cu o treime mai mare decat al doilea. Care sunt numerele?​

Respuesta :

Answer:

The numbers are 16,24 and 32

Step-by-step explanation:

The question in English is

The arithmetic mean of 3 numbers is 24. The second number is 50% greater than the first and the third is one third greater than the second. What are the numbers?

Let

x---> the first number

y ---> the second number

z ---> the third number

we know that

The arithmetic mean of 3 numbers is 24

so

[tex]\frac{x+y+z}{3}=24[/tex]

[tex]x+y+z=72[/tex] ----> equation A

The second number is 50% higher than the first

Remember that

[tex]100\%+50\%=150\%=150/100=1.50[/tex]

so

[tex]y=1.5x[/tex]

[tex]x=\frac{2}{3}y[/tex] ----> equation B

The third number is is one third greater than the second

Remember that

[tex]1+\frac{1}{3}=\frac{4}{3}[/tex]

so

[tex]z=\frac{4}{3}y[/tex] ----> equation C

substitute equation B and equation C in equation A

[tex]\frac{2}{3}y+y+\frac{4}{3}y=72[/tex]

solve for y

[tex]3y=72\\y=24[/tex]

Find the value of x

[tex]x=\frac{2}{3}(24)=16[/tex]

Find the value of z

[tex]z=\frac{4}{3}(24)=32[/tex]

therefore

The numbers are

16,24 and 32