which expressions are equivalent to 25x^4–64? select three options.

a. 25x^4+40x–40x–64

b. 25x^4+13x–13x–64

c. (5x^2+8)(5x^2–8)

d. (x^2+13)(x^2–13)

e. (5x^2–8)^2

Respuesta :

The equivalent expression of 25[tex]x^4[/tex] - 64 are "a), b) and c)".

Step-by-step explanation:

The given expression is:

25[tex]x^4[/tex] - 64

To find, the equivalent expressions are:

a) 25[tex]x^4[/tex] + 40x - 40x - 64

=  25[tex]x^4[/tex] - 64, is the equivalent expression.

b) 25[tex]x^4[/tex] + 13x - 13x - 64

=  25[tex]x^4[/tex] - 64, is the equivalent expression.

c) (5[tex]x^2[/tex] + 8)(5[tex]x^2[/tex] - 8)

Using the algebraic identity,

(a + b)(a - b) = [tex]a^{2}-b^{2}[/tex]

= [tex](5x^2)^2-8^2[/tex]

=  25[tex]x^4[/tex] - 64, is the equivalent expression.

d) ([tex]x^2[/tex] + 13)([tex]x^2[/tex] - 13)

Using the algebraic identity,

(a + b)(a - b) = [tex]a^{2}-b^{2}[/tex]

= [tex](x^2)^2-13^2[/tex]

=  [tex]x^4[/tex] - 169, is not a equivalent expression.

e) [tex](5x^2-8)^2[/tex]

Using the algebraic identity,

[tex](a-b)^{2} =a^{2} -2ab+b^2[/tex]

[tex]= (5x^2)^{2} -2(5x^2)(8)+8^2[/tex]

[tex]= 25x^4 -80x^2+64[/tex],  is not a equivalent expression.

∴ The equivalent expression of 25[tex]x^4[/tex] - 64 are "a), b) and c)".

Answer: it’s A, B,C

Step-by-step explanation: