Answer:
The length of BC = 18.52 m & AD = 28 m.
Step-by-step explanation:
Since Δ ABC & ΔACD are the right angles.
So BC = CD
From Δ ABC
[tex]AB^{2} = AC^{2} + BC^{2}[/tex]
[tex]28^{2} = 21^{2} + x^{2}[/tex]
[tex]x^{2} = 784 - 441[/tex]
x = 18.52 m
Thus BC = x = 1852 m
CD = BC = 18.52 m
Now from the ΔACD
[tex]AD^{2} = AC^{2} + CD^{2}[/tex]
[tex]AD^{2} = 21^{2} + 18.52^{2}[/tex]
AD = [tex]\sqrt{784}[/tex]
AD = 28 m
Therefore the length of BC = 18.52 m & AD = 28 m.