Respuesta :

Area inside the semi-circle and outside the triangle is  (91.125π - 120) in²

Solution:

Base of the triangle = 10 in

Height of the triangle = 24 in

Area of the triangle = [tex]\frac{1}{2} bh[/tex]

                                [tex]$=\frac{1}{2} \times 10\times24[/tex]

Area of the triangle = 120 in²

Using Pythagoras theorem,

[tex]\text{Hypotenuse}^2=\text{base}^2+\text{height}^2[/tex]

[tex]\text{Hypotenuse}^2=10^2+24^2[/tex]

[tex]\text{Hypotenuse}^2=100+576[/tex]

[tex]\text{Hypotenuse}^2=676[/tex]

Taking square root on both sides, we get

Hypotenuse = 23 inch = diameter

Radius = 23 ÷ 2 = 11.5 in

Area of the semi-circle = [tex]\frac{1}{2}\pi r^2[/tex]

                                      [tex]$=\frac{1}{2} \pi \times (13.5)^2[/tex]

Area of the semi-circle = 91.125π in²

Area of the shaded portion = (91.125π - 120)  in²

Area inside the semi-circle and outside the triangle is  (91.125π - 120)  in².