Respuesta :
Answer:
$129,000
Explanation:
P=$300
r=7%/12
=0.07/12
=0.0058
n=12×18=216
A×{(1+r)^n-1}/r
$300×{(1+0.0058)^216-1}/0.0058
$300×{(1.0058)^216-1}/0.0058
$300×(3.489-1)/0.0058
$300×(2.489)/0.0058
$300×429.14
$300×430 to the nearest cent
$129,000
Answer: $129,216.22
Explanation:
Given the following ;
Annuity(A) = $300
Annual rate = 7% = 0.07
Monthly rate = 0.07÷12 = 0.0058333
Period(n) = 18 years = 216 months
FVA = How much the annuity(A) invested each month will be worth at a monthly rate of 0.0058333 after 18 years.
FVA = A ×[ (1 + r)^n - 1] ÷ r
FVA = 300×[(1+0.0058333)^216
- 1]÷0.0058333
FVA = 300 × [1.0058333^216 - 1] ÷ 0.0058333
FVA = (300 × 2.512514178331248) ÷ 0.0058333
FVA = 753.757 ÷ 0.0058333
FVA = $129,216.22