Respuesta :

Given:

Sum of interior angle

To find:

Number of sides of a polygon

Solution:

Using sum of interior angles formula:

[tex]$S=(n-2) \times 180^{\circ}[/tex]

where "S" is the sum of interior angels and "n" is the number of sides of a polygon.

Divide by 180° on both sides.

[tex]$\frac{S}{180^{\circ}}=\frac{(n-2) \times 180^{\circ}}{180^{\circ}}[/tex]

Cancel common factor 180°.

[tex]$\frac{S}{180^{\circ}}=n-2[/tex]

Add 2 on both sides.

[tex]$\frac{S}{180^{\circ}}+2=n-2+2[/tex]

[tex]$\frac{S}{180^{\circ}}+2=n[/tex]

Switch the sides.

[tex]$n=\frac{sum}{180^{\circ}}+2[/tex]

Therefore number of sides of a polygon is [tex]n=\frac{sum}{180^{\circ}}+2[/tex].