What is the area of an isosceles right triangle whose hypotenuse is (7 √2)?

Write your answer as a decimal to the nearest tenth.

Respuesta :

Answer:

Area of an isosceles right triangle is 24.5

Step-by-step explanation:

Given that triangle is an isosceles right angle which means that two side of the triangle are equal and one of the angle is [tex]90\degree[/tex].

Consider triangle [tex]\bigtriangleup ABC[/tex] (Refer to attachment),

[tex]\angle ABC=90^{\circ},AB=BC, AC=7\sqrt{2}[/tex].

Since both sides are equal angle opposite to both sides are same.

Now applying pythagoras theorem to [tex]\bigtriangleup ABC[/tex],

[tex] \left ( AB \right )^{2}+\left ( BC \right )^{2}=\left ( AC \right )^{2}[/tex]

Assume [tex]AB=BC=x[/tex],

Substituting the value,

[tex] \left ( x \right )^{2}+\left ( x \right )^{2}=\left ( 7\sqrt{2} \right )^{2}[/tex]

Simplifying,

[tex] 2\left ( x \right )^{2}=\left (7^2\left(\sqrt{2}\right)^2 \right )[/tex]

[tex] 2\left(x\right)^{2}=\left (49\left(2\right)\right)[/tex]

[tex] 2\left(x\right)^{2}=98[/tex]

Dividing by 2,

[tex] \left(x\right)^{2}=49[/tex]

Taking square root on both sides,

[tex]\sqrt{\left(x\right)^{2}}=\sqrt{49}[/tex]

[tex]x=7[/tex]

[tex]\therefore AB=BC=7[/tex]

Formula for area of triangle is given as,

[tex]Area=\dfrac{1}{2}\times base\times height[/tex]

Now AB=height,BC=base.

Substituting the value,

[tex]Area=\dfrac{1}{2}\times AB\times BC[/tex]

[tex]Area=\dfrac{1}{2}\times 7\times 7[/tex]

[tex]Area=\dfrac{1}{2}\times 49[/tex]

[tex]Area=\dfrac{49}{2}[/tex]

[tex]Area=24.5[/tex]

So, area of an isosceles right triangle is 24.5

Ver imagen neha678