Respuesta :

corm

Answer:

Step-by-step explanation:

[tex](2x - 3)^{2} = 4x - 6[/tex]

Using FOIL, we can expand the polynomial on the left-hand side of the equation:

[tex]4x^{2} - 12x + 9 = 4x - 6[/tex]

Next, let's move all of the terms to the left-hand side of the equation and combine like terms:

[tex]4x^{2} - 12x - 4x + 9 + 6 = 0[/tex]

[tex]4x^{2} - 16x + 15 = 0[/tex]

Now we can factor the quadratic:

[tex](2x - 5)(2x - 3) = 0[/tex]

This produces two equations to give us the two solutions:

The first solution:

[tex]2x - 5 = 0[/tex]

[tex]2x = 5[/tex]

[tex]x = \frac{5}{2}[/tex]

and the second solution:

[tex]2x - 3 = 0[/tex]

[tex]2x = 3[/tex]

[tex]x = \frac{3}{2}[/tex]

So the solutions to this problem are [tex]x = \frac{3}{2}, \frac{5}{2}[/tex]