Respuesta :
Answer:
The [tex]\sin \theta, \tan \theta, \csc \theta, \cot \theta[/tex] have the wrong values.
Step-by-step explanation:
The point (-7,-24) lies in the third quadrant, where the only tangent function will have a positive value and all the other trigonometric functions are negative.
The origin has a distance from the point is [tex]\sqrt{(- 7)^{2} + (- 24)^{2}} = 25[/tex].
If the point makes an angle [tex]\theta[/tex] with the negative x-axis, then
[tex]\sin \theta = - \frac{24}{25}[/tex]
[tex]\cos \theta = -\frac{7}{25}[/tex]
[tex]\tan \theta = \frac{24}{7}[/tex]
[tex]\sec \theta = - \frac{25}{7}[/tex]
[tex]\csc \theta = - \frac{25}{24}[/tex]
[tex]\cot \theta = \frac{7}{24}[/tex]
Therefore, the [tex]\sin \theta, \tan \theta, \csc \theta, \cot \theta[/tex] have the wrong values. (Answer)
Answer:
Sine(0) Tangent(0) Co-secant(0) Cotangent(0)
Step-by-step explanation:
Just took it