Answer:
160 Hz.
Explanation:
For nth harmonic, the fundamental frequency,
[tex]f_n=\frac{n}{2L}\sqrt{\frac{T}{\mu} }[/tex]
Here T is the tension in string, \mu is the mass/unit of length of the string and L is the string length.
Given n = 1 frequency of the 1st harmonic (the Fundamental), T = 859 N,
L= 339 cm =3.39 m and [tex]\mu=0.0073 g/cm =0.00073 kg /m[/tex].
Substituting these values, we get
[tex]f_1=\frac{1}{2\times3.39m} \sqrt{\frac{859N}{0.00073\ kg/m } }[/tex]
[tex]f_1= 0.147 \times1084.76=159.99 Hz[/tex]
[tex]f_1=160 Hz[/tex]
Thus, the fundamental frequency is 160 Hz.