A cardboard box without a lid is to have a volume of 19,652 cm3. Find the dimensions that minimize the amount of cardboard used. (Let x, y, and z be the dimensions of the cardboard box.)

Respuesta :

Answer:

The dimension of the cardboard is 34 cm by 34 cm by 17 cm.

Step-by-step explanation:

Let the dimension of the cardboard box be x cm by y cm by z cm.

The surface area of the cardboard box without lid is

f(x,y,z)= xy+2xz+2yz.....(1)

Given that the volume of the cardboard is 19,652 cm³.

Therefore xyz =19,652

[tex]\Rightarrow z=\frac{19652}{xy}[/tex]......(2)

putting the value of z in the equation (1)

[tex]f(x,y)=xy+2x(\frac{19652}{xy})+2y(\frac{19652}{xy})[/tex]

[tex]\Rightarrow f(x,y)=xy+\frac{39304}{y})+\frac{39304}{x}[/tex]

The partial derivatives are

[tex]f_x=y-\frac{39304}{x^2}[/tex]

[tex]f_y=x-\frac{39304}{y^2}[/tex]

To find the dimension of the box set the partial derivatives [tex]f_x=0[/tex] and [tex]f_y=0[/tex].Therefore [tex]y-\frac{39304}{x^2}=0[/tex]

[tex]\Rightarrow y=\frac{39304}{x^2}[/tex].......(3)

and   [tex]x-\frac{39304}{y^2}=0[/tex]

[tex]\Rightarrow x=\frac{39304}{y^2}[/tex].......(4)

Now putting the x in equation (3)

[tex]y =\frac {39304}{(\frac{39304}{y^2})^2}[/tex]

[tex]\Rightarrow y=\frac{y^4}{39304}[/tex]

[tex]\Rightarrow y^3= 39304[/tex]

⇒y=34 cm

Then [tex]\Rightarrow x=\frac{39304}{34^2}[/tex] =34 cm.

Putting the value of x and y in the equation (2)

[tex]z=\frac{19652}{34 \times 24}[/tex]

  =17 cm.

The dimension of the cardboard is 34 cm by 34 cm by 17 cm.