Answer:
The temperature coefficient of resistivity is 0.001689 /°C
Explanation:
Given initial temperature [tex]T_{1}[/tex]= 25°C = 25 + 273 = 298 k
The final temperature [tex]T_{2}[/tex] = Three times [tex]T_{1}[/tex] = 3
Resistance at [tex]T_{1}[/tex]= [tex]R_{1}[/tex]
Resistance at [tex]T_{2}[/tex] ([tex]R_{2}[/tex])= double resistance at [tex]T_{1}[/tex] = 2 [tex]R_{1}[/tex]
The resistance of a body can be obtained when given the above parameters with the expression below;
[tex]R_{2} = R_{1} [1 +\alpha (T_{2}-T_{1})[/tex]...............................1
Inputting the parameters into equation 1 we have;
2 [tex]R_{1}[/tex] =
isolating α we have;
[tex]\alpha =\frac{1}{2T_{1} }[/tex]
α = 1/(2 x 298 k)
α = 1/596
α = 0.001678 /K = 0.001689 /°C (change in temperature is the same at both centigrade and kelvin scale.
Therefore the temperature coefficient of resistivity is
0.001689 /°C