Use the method of "undetermined coefficients" to find a particular solution of the differential equation. (The solution found may not include any term that solves the corresponding homogeneous problem.)

y''(x) − 10y'(x) + 61y(x) = −3796 cos(5x) + 185e6x

Respuesta :

Answer:

The particular solution of the differential equation

= [tex]\frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}[/tex]  +  [tex]\frac{1}{37}185e^{6x})[/tex]

Step-by-step explanation:

Given differential equation y''(x) − 10y'(x) + 61y(x) = −3796 cos(5x) + 185e6x

The differential operator form [tex](D^{2} -10D+61)y(x) = −3796 cos(5x) + 185e^{6x}[/tex]

Rules for finding particular integral in some special cases:-

  • let f(D)y = [tex]e^{ax}[/tex] then

      the particular integral [tex]\frac{1}{f(D)} (e^{ax} ) = \frac{1}{f(a)} (e^{ax} ) if f(a)[/tex] ≠ 0

  • let f(D)y = cos (ax ) then

      the particular integral [tex]\frac{1}{f(D)} (cosax ) = \frac{1}{f(D^2)} (cosax ) =\frac{cosax}{f(-a^2)}[/tex]  f(-a^2) ≠ 0

Given problem

[tex](D^{2} -10D+61)y(x) = −3796 cos(5x) + 185e^{6x}[/tex]

Particular integral:-

[tex]P.I = \frac{1}{f(D)}( −3796 cos(5x) + 185e^{6x})[/tex]

[tex]P.I = \frac{1}{D^2-10D+61}( −3796 cos(5x) + 185e^{6x})[/tex]

[tex]P.I = \frac{1}{D^2-10D+61}( −3796 cos(5x) + \frac{1}{D^2-10D+61}185e^{6x})[/tex]  

P.I   = [tex]I_{1} +I_{2}[/tex]

we will apply above two conditions, we get

[tex]I_{1}[/tex] =

[tex]\frac{1}{D^2-10D+61}( −3796 cos(5x) = \frac{1}{(-25)-10D+61}( −3796 cos(5x) ( since D^2 = - 5^2)[/tex]                                        [tex]= \frac{1}{(36-10D}( −3796 cos(5x) \\= \frac{1}{(36-10D}X\frac{36+10D}{36+10D} ( −3796 cos(5x)[/tex]

 on simplification we get

= [tex]\frac{1}{(36^2-(10D)^2}36+10D( −3796 cos(5x)[/tex]

= [tex]\frac{-1,36,656cos5x+1,89,800 sin5x}{1296-100(-25)}[/tex]

= [tex]\frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}[/tex]

[tex]I_{2}[/tex] =

[tex]\frac{1}{D^2-10D+61}185e^{6x}) = \frac{1}{6^2-10(6)+61}185e^{6x})[/tex]

[tex]\frac{1}{37}185e^{6x})[/tex]

 Now particular solution

P.I   = [tex]I_{1} +I_{2}[/tex]

P.I  = [tex]\frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}[/tex]    +  [tex]\frac{1}{37}185e^{6x})[/tex]