Respuesta :

Answer:

1

Step-by-step explanation:

Before we do that limit, let's look at:

[tex]\lim_{x \rightarrow \infty} \frac{-1}{x}[/tex]

[tex]-\lim_{x \rightarrow \infty} \frac{1}{x}=0[/tex]

You can look at a graph of [tex]y=\frac{1}{x}[/tex] if that convinces you. The graph approaches [tex]y=0[/tex] as [tex]x[/tex] gets larger and larger.

Let's get back to:

[tex]\lim_{x \rightarrow \infty} e^{\frac{-1}{x}}[/tex]

Let [tex]u=\frac{-1}{x}[/tex].

Then we have [tex]\lim_{u \rightarrow 0} e^{u}[/tex].

This function is actually continuous at [tex]u=0[/tex] so we can use direct substitution.

Conclusion:

[tex]\lim_{x \rightarrow \infty} e^{\frac{-1}{x}}=\lim_{u \rightarrow 0} e^{u}=e^0=1[/tex]