Step-by-step explanation:
Given
[tex]y=x^2-2x-3[/tex]
Putting x = -2 in the function
[tex]y=x^2-2x-3[/tex]
[tex]y=\left(-2\right)^2-2\left(-2\right)-3[/tex]
= 4 + 4 - 3
= 5
(x, y) = (-2, 5)
Putting x = -1 in the function
[tex]y=x^2-2x-3[/tex]
[tex]y=\left(-1\right)^2-2\left(-1\right)-3[/tex]
= 1 + 2 - 3
= 0
(x, y) = (-1, 0)
Putting x = 0 in the function
[tex]y=\left(0\right)^2-2\left(0\right)-3[/tex]
= 0 - 0 -3
= -3
(x, y) = (0, -3)
Putting x = 1 in the function
[tex]y=\left(1\right)^2-2\left(1\right)-3[/tex]
= 1 - 2 - 3
= -4
(x, y) = (1, -4)
Putting x = 2 in the function
[tex]y=\left(2\right)^2-2\left(2\right)-3[/tex]
= 4 - 4 - 3
= -3
(x, y) = (2, -3)
Putting x = 3 in the function
[tex]y=\left(3\right)^2-2\left(3\right)-3[/tex]
= 9 - 6 - 3
= 0
(x, y) = (3, 0)
Putting x = 4 in the function
[tex]y=\left(4\right)^2-2\left(4\right)-3[/tex]
= 16 - 8 - 3
= 5
(x, y) = (4, 5)
Therefore, completing the table:
x y
-2 5
-1 0
0 -3
2 -4
3 0
4 5