Respuesta :

Answer:

[tex]f(n) = n^{2} - 6[/tex]

Step-by-step explanation:

The given sequence is -5, -2,3, 10, 19.

We can observe the following pattern:

-5+3=-2

-2+5=3

3+7=10

10+9=19

There is no constant difference among the terms.

So the sequence is quadratic.

Let the nth term be:

[tex]f(n) = a {n}^{2} + bn + c[/tex]

[tex]f(1) = a(1)^{2} + b(1) + c \\ a + b+ c = - 5 - - - (1)[/tex]

Also,

[tex]f(2) = a(2)^{2} + b(2) + c \\ [/tex]

[tex]4a + 2b + c = - 2[/tex]

and

[tex]f(3) = a(3)^{2} + b(3) + c \\ 9a + 3b + c = - 3 - - - (3)[/tex]

We solve the three equations simultaneously to get:

a=1,b=0, c=-6.

Therefore the nth term is

[tex]f(n) = (n)^{2} + 0 \times n - 6 \\ f(n) = (n)^{2} - 6[/tex]