Respuesta :
Answer:
(0.655,0.845)
Step-by-step explanation:
p
^
​ Â
Â
0.75
0.75
0.75
0.75
0.75
​ Â
Â
±z Â
∗
Â
n
p
^
​ Â
(1− Â
p
^
​ Â
)
​ Â
Â
​ Â
Â
±(1.96) Â
80
0.75(1−0.75)
​ Â
Â
​ Â
Â
±(1.96)(0.048412)
±0.094888;
−0.094888=0.655112
+0.094888=0.844888
​ Â
Following are the calculation to the z value:
Given:
[tex](n) = 80\\\\ (X) = 60\\\\ C.I= 95\%\\[/tex]
To find:
z value=?
Solution:
[tex](n) = 80\\\\ (X) = 60\\\\ (\hat{p}) = \frac{X}{n} = \frac{60}{80} = 0.75\\\\ [/tex]
In this case, we must compute a [tex]95\%[/tex] confidence interval for the fraction of passengers who use mobile boarding cards, which may be calculated as
[tex]\to \hat{p} \pm Z_{\frac{\alpha}{2}} \times \sqrt{(\frac{\hat{p}\times (1-\hat{p})}{n})}\\\\ \to C.I = 0.95\\\\ [/tex]
The level of importance [tex] (\alpha) = 1 - 0.95 = 0.05[/tex]
[tex]\to \frac{\alpha}{2} = \frac{0.05}{2} = 0.025[/tex]
from the Z table, we found[tex] Z_{\frac{\alpha}{2}} = 1.96[/tex] So [tex]95\%[/tex] confidence interval is
[tex]\to 0.75 \pm 1.96 \times \sqrt{(\frac{0.75\times (1-0.75)}{80})}\\\\ \to 0.75 \pm 1.96 \times \sqrt{(\frac{0.75\times 0.25}{80})}\\\\ \to 0.75 \pm 1.96 \times \sqrt{(\frac{0.1875}{80})}\\\\ \to 0.75 \pm 1.96 \times \sqrt{(0.00234375)}\\\\ \to 0.75 \pm 1.96 \times 0.05\\\\ \to 0.75 \pm 0.098\\\\ \to 0.652
So the [tex]95\%[/tex] confidence interval for the proportion of passengers that utilize mobile boarding cards is somewhere between 0.652 and 0.848.
Therefore, the answer is "Option C".
Learn more:
brainly.com/question/22867285