Respuesta :
Answer:
a
i So the approximate distribution of [tex]\= X[/tex] is [tex]\mu_{\= X} =103[/tex] and [tex]\sigma_{\= X} = 0.783[/tex]
ii So the approximate distribution of [tex]\= Y[/tex] is [tex]\mu_{\= Y} =105[/tex] and [tex]\sigma_{\= Y} = 0.645[/tex]
b
the approximate distribution of [tex]\=X - \= Y[/tex] is [tex]E (\= X - \= Y) = -2[/tex] and [tex]\sigma_{\= X - \=Y}=1.029[/tex]
Here we can see that the mean of the approximate distribution is negative which tell us that this negative value of the data for [tex]\=X - \= Y[/tex] sample are more and their frequency occurrence is higher than the positive values
c
the value of [tex]P(-1 \le \=X - \= Y \le 1)[/tex] is [tex]= -0.1639[/tex]
Step-by-step explanation:
From the question we are given that
The expected tensile strength of the type A steel is [tex]\mu_A = 103 ksi[/tex]
The standard deviation of type A steel is [tex]\sigma_A = 7ksi[/tex]
The expected tensile strength of the type B steel is [tex]\mu_B = 105\ ksi[/tex]
The standard deviation of type B steel is [tex]\sigma_B = 5 \ ksi[/tex]
Also the assumptions are
Let [tex]\= X[/tex] be the sample average tensile strength of a random sample of 80 type-A specimens
Here [tex]n_a =80[/tex]
Let [tex]\= Y[/tex] be the sample average tensile strength of a random sample of 60 type-B specimens.
Here [tex]n_b = 60[/tex]
Let the sampling distribution of the mean be
[tex]\mu _ {\= X} = \mu[/tex]
[tex]=103[/tex]
Let the sampling distribution of the standard deviation be
[tex]\sigma _{\= X} = \frac{\sigma }{\sqrt{n_a} }[/tex]
[tex]= \frac{7}{\sqrt{80} }[/tex]
[tex]=0.783[/tex]
So What this mean is that the approximate distribution of [tex]\= X[/tex] is [tex]\mu_{\= X} =103[/tex] and [tex]\sigma_{\= X} = 0.783[/tex]
For [tex]\= Y[/tex]
The sampling distribution of the sample mean is
[tex]\mu_{\= Y} = \mu[/tex]
[tex]= 105[/tex]
The sampling distribution of the standard deviation is
[tex]\sigma _{\= Y} = \frac{\sigma }{\sqrt{n_b} }[/tex]
[tex]= \frac{5}{\sqrt{60} }[/tex]
[tex]= 0.645[/tex]
So What this mean is that the approximate distribution of [tex]\= Y[/tex] is [tex]\mu_{\= Y} =105[/tex] and [tex]\sigma_{\= Y} = 0.645[/tex]
Now to obtain the approximate distribution for [tex]\=X - \= Y[/tex]
[tex]E (\= X - \= Y) = E (\= X) - E(\= Y)[/tex]
[tex]= \mu_{\= X} - \mu_{\= Y}[/tex]
[tex]= 103 -105[/tex]
[tex]= -2[/tex]
The standard deviation of [tex]\=X - \= Y[/tex] is
[tex]\sigma_{\= X - \=Y} = \sqrt{\sigma_{\= X}^2 - \sigma_{\= Y}^2}[/tex]
[tex]= \sqrt{(0.783)^2 + (0.645)^2}[/tex]
[tex]=1.029[/tex]
Now to find the value of [tex]P(-1 \le \=X - \= Y \le 1)[/tex]
Let us assume that [tex]F = \= X - \= Y[/tex]
[tex]P(-1 \le F \le 1)[/tex] [tex]= P [\frac{-1 -E (F)}{\sigma_F} \le Z \le \frac{1-E(F)}{\sigma_F} ][/tex]
[tex]= P[\frac{-1-(-2)}{1.029} \le Z \le \frac{1-(-2)}{1.029} ][/tex]
[tex]= P[0.972 \le Z \le 2.95][/tex]
[tex]= P(Z \le 0.972) - P(Z \le 2.95)[/tex]
Using the z-table to obtain their z-score
[tex]= 0.8345 - 0.9984[/tex]
[tex]= -0.1639[/tex]
(a): The approximate distribution of [tex]\bar{X}[/tex] is [tex]\mu_{\bar{x}}=105[/tex] and [tex]\sigma_{\bar{x}}=1.265[/tex]
The approximate distribution of [tex]\bar{Y}[/tex] is [tex]\mu_{\bar{y}}=100[/tex] and [tex]\sigma_{\bar{y}}=1.0142[/tex]
(b): The approximate distribution of [tex]\bar{X}-\bar{Y}[/tex] is [tex]E(\bar{X}-\bar{Y})=5[/tex] and [tex]\sigma_k=1.6213[/tex]
(c): The value of [tex]P(-1\le K\le1)=0.0066[/tex]
Probability Distribution:
The probability distribution gives the possibility of each outcome of a random experiment or event. It provides the probabilities of different possible occurrences.
Given that,
[tex]For\ type\ A,\mu=105 ksi\\\sigma=8 ksi\\For\ type\ B,\mu=100ksi\\\sigma=6ksi[/tex]
Part(a):
The sampling distribution of sample mean is,
[tex]\mu_{\bar{x}}=\mu\\=105[/tex]
The sampling distribution of standard deviation is,
[tex]\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n} } \\=\frac{8}{\sqrt{40} } \\=1.265[/tex]
The sampling distribution of sample mean is,
[tex]\mu_{\bar{y}}=100[/tex]
The sampling distribution of standard deviation is,
[tex]\sigma_{\bar{y}}=\frac{\sigma}{\sqrt{n} } \\=\frac{6}{\sqrt{35} } \\=1.0142[/tex]
Part(b):
Let [tex]K=\bar{X}-\bar{Y}[/tex]
The mean of [tex]\bar{X}-\bar{Y}[/tex] is,
[tex]E(\bar{X}-\bar{Y})=E(\bar{X})-E(\bar{Y})\\=105-100\\=5[/tex]
The standard deviation of [tex]\bar{X}-\bar{Y}[/tex] is,
[tex]\sigma_k=\sqrt{\sigma_{\bar{x}}^{2}+\sigma_{\bar{y}}^{2}} \\=\sqrt{(1.265)^2+(1.014)^2}\\ =1.6213[/tex]
Par(c):
Let [tex]K=\bar{X}-\bar{Y}[/tex]
[tex]P(-1\le K\le1)=P(\frac{-1-E(K)}{\sigma_k}\le Z \le \frac{1-E(K)}{\sigma_k} )\\=P(-3.7\le Z\le-2.47\\=\phi(-2.47)-\phi(-3.7)\\=0.006756-0.000108\\=0.0066[/tex]
Learn more about the topic Probability Distribution:
https://brainly.com/question/12385304