Answer:
[tex]d = \sqrt{2}\cdot \sqrt {1-\cos t - \sin t}[/tex]
Step-by-step explanation:
Let suppose that one of the radii meets the circle at the point (1,0). The straight line distance formula is:
[tex]d = \sqrt{(\cos t - 1)^{2}+(\sin t - 1)^{2}}[/tex]
[tex]d = \sqrt{(\cos^{2}t - 2\cdot \cos t + 1)+(\sin^{2}t - 2\cdot \sin t + 1)}[/tex]
[tex]d = \sqrt{2-2\cdot (\cos t + \sin t )}[/tex]
[tex]d = \sqrt{2}\cdot \sqrt {1-\cos t - \sin t}[/tex]