Answer:
Step-by-step explanation:
Given data:
SS={0,1,2,3,4}
Let probability of moving to the right be = P
Then probability of moving to the left is =1-P
The transition probability matrix is:
[tex]\left[\begin{array}{ccccc}1&P&0&0&0\\1-P&1&P&0&0\\0&1-P&1&P&0\\0&0&1-P&1&P\\0&0&0&1-P&1\end{array}\right][/tex]
Calculating the limiting probabilities:
Ï€0=Ï€0+PÏ€1 Â Â Â Â Â Â Â Â eq(1)
Ï€1=(1-P)Ï€0+Ï€1+PÏ€2 Â Â eq(2)
Ï€2=(1-P)Ï€1+Ï€2+PÏ€3 Â Â eq(3)
Ï€3=(1-P)Ï€2+Ï€3+PÏ€4 Â Â eq(4)
Ï€4=(1-P)Ï€3+Ï€4 Â Â Â Â Â Â eq(5)
Ï€0+Ï€1+Ï€2+Ï€3+Ï€4=1
Ï€0-Ï€0-PÏ€1=0
→π1 = 0
substituting value of π1  in eq(2)
(1-P)Ï€0+PÏ€2=0
from
Ï€2=(1-P)Ï€1+Ï€2+PÏ€3 Â
we get
(1-P)Ï€1+PÏ€3 = 0
from
Ï€3=(1-P)Ï€2+Ï€3+PÏ€4
we get
(1-P)Ï€2+PÏ€4 =0
from Ï€4=(1-P)Ï€3+Ï€4 Â
→π3=0
substituting values of π1 and π3 in eq(3)
→π2=0
Now
Ï€0+Ï€1+Ï€2+Ï€3+Ï€4=0
Ï€0+Ï€4=1
Ï€0=0.5
Ï€4=0.5
So limiting probabilities are {0.5,0,0,0,0.5}