Respuesta :

Answer:

110

Step-by-step explanation:

Using pythagorean theorm

c^2 = a^2 + b^22

610^2  = 600^2 + b^2

372100 = 360000 + b^2

b^2 = 12100

b = 110

Answer:

The plane's altitude is 110 meters

Step-by-step explanation:

We are going to use Pythagoras theorem to solve this;

The Pythagoras theorem states that; in a right-angle triangle,

opposite² + adjacent² = hypotenuse²

In the diagram given, adjacent=600 m  hypotenuse = 610 m   and opposite=x

We can now proceed to insert the values into the formula, thus;

opposite² + adjacent² = hypotenuse²

x² + 600² = 610²

x² + 360 000 = 372 100

subtract 360 000 from both-side of the equation

x² + 360 000 - 360 000 = 372 100 - 360 000

x² = 12 100

Take the square root of both-side

√x² = √12 100

x = 110 m

Therefore the altitude of the plane is 110 m