Answer:
[tex]1.46*10^{-5}T[/tex]
Explanation:
Using the magnetic field equation:
[tex]B = \frac {\mu_oI} {2p r}[/tex]
where:
[tex]\mu_o[/tex] = permeability of free space = [tex]4p*10^{-7}T*m/A[/tex]
I = current in the wire
r = distance from the wire to the point
Magnetic field due to the wire on the x- axis can be calculated as:
[tex]B = \frac {\mu_oI} {2p r}[/tex]
[tex]B= \frac{4p*10^{-7}*43}{2p*0.60}[/tex]
[tex]B = 1.43 *10^{-5} T[/tex]
Magnetic field due to the positive z-direction wire:
[tex]B = \frac{\mu_ol}{2pr}[/tex]
[tex]B = \frac{4p*10^{-7}*72}{2p*5.1}[/tex]
[tex]B = 2.82 *10^{-6}T[/tex]
Now; adding these two vector components together to get the magnitude of the resultant vector; we have:
= [tex]\sqrt{(1.43 *10^{-5})^2+(2.82 *10^{-6})^2}[/tex]
= [tex]1.46*10^{-5}T[/tex]