The International Space Station is orbiting at an altitude of about 370 km above the earth's surface. The mass of the earth is 5.97 × 1024 kg, the radius of the earth is 6.38 × 106 m, and G = 6.67 × 10-11 N • m2/kg2. Assuming a circular orbit, (a) what is the period of the International Space Station's orbit? (b) what is the speed of the International Space Station in its orbit?

Respuesta :

Answer:

A. 5521.86 secs

B. 7680.65 m/s

Explanation:

Parameters given:

Radius of orbit of the space station, R = 6380000 + 370000 = 6750000 m

Mass of earth = 5.97 * 10^24 kg

Gravitational constant, G = 6.67 * 10^(-11) Nm²/kg²

A. Orbital period, T, can be obtained using the formula:

T²/R³ = (4 * pi²) / (G * M)

T²/(6750000³) = (4 * 3.142²) / (6.67 * 10^(-11) * 5.97 * 10^24)

T² = (4 * 3.142² * 6750000³) / (6.67 * 10^(-11) * 5.97 * 10^24)

T² = 30490944.39

T = 5521.86 secs

B. Orbital velocity, v, can be obtained by using the formula:

v² = (G * M) / R

v² = (6.67 * 10^(-11) * 5.97 * 10^(-24)) / 6750000

v² = 58992384

v = 7680.65 m/s

(a) The period of the International Space Station's orbit is 5521.86 s.

(b)  The speed of the International Space Station in its orbit is 7680.65 m/s.

Given data:

The altitude of Space station is, [tex]h = 370 \;\rm km=370 \times 10^{3} \;\rm m[/tex].

The mass of Earth is, [tex]m = 5.97 \times 10^{24} \;\rm kg[/tex].

The radius of Earth is, [tex]r = 6.38 \times 10^{6} \;\rm m[/tex].

The gravitational constant is, [tex]G = 6.67 \times 10^{-11} \;\rm Nm^{2}/kg^{2}[/tex].

(a)

The standard expression for the period of orbiting is given as,

[tex]T^{2} = \dfrac{4\pi^2 \times (h+r)^{3}}{G \times m}\\\\T^{2} = \dfrac{4\pi^2 \times (370000+6380000)^{3}}{6.67 \times 10^{-11} \times 5.97 \times 10^{24}} \\\\\\T = \sqrt{30490944.39}\\\\T = 5521.86 \;\rm s[/tex]

Thus, the period of the International Space Station's orbit is 5521.86 s.

(B)

Now, the speed of the International Space Station in its orbit is,

[tex]v^{2}=\dfrac{Gm}{r}\\\\v^{2}=\dfrac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6750000}\\\\\\v = \sqrt{58992384}\\\\v = 7680.65 \;\rm m/s[/tex]

Thus,  the speed of the International Space Station in its orbit is 7680.65 m/s.

Learn more about the orbiting speed here:

https://brainly.com/question/14755913