Respuesta :

Answer:

yes

Step-by-step explanation:

yes, the slope and distance from each side is equal to another

Answer:

The answer to your question is Yes, it is a square.

Step-by-step explanation:

Data

From the picture

A (8, 3)

B (7, 8)

C (2, 7)

D (3, 2)

Process

-Use the formula of the distance between two points.

-Calculate the distance between  AB, BC, CD, DA

Formula

d = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}}[/tex]

1.- Distance between AB

dAB = [tex]\sqrt{(7 - 8)^{2}+ (8 - 3)^{2}}[/tex]

dAB = [tex]\sqrt{(-1)^{2}+ (5)^{2}}[/tex]

dAB = [tex]\sqrt{1 + 25}[/tex]

dAB = [tex]\sqrt{26}[/tex]

2.- Distance between BC

dBC = [tex]\sqrt{(2 - 7)^{2}+ (7 - 8)^{2}}[/tex]

dBC = [tex]\sqrt{(-5)^{2}+ (-1)^{2}}[/tex]

dBC = [tex]\sqrt{25 + 1}[/tex]

dBC = [tex]\sqrt{26}[/tex]

3.- Distance between CD

dCD = [tex]\sqrt{(3 - 2)^{2}+ (2 - 7)^{2}}[/tex]

dCD = [tex]\sqrt{(1)^{2}+ (5)^{2}}[/tex]

dCD = [tex]\sqrt{1 + 25}[/tex]

dCD = [tex]\sqrt{26}[/tex]

4.- Distance between AD

dAD = [tex]\sqrt{(3 - 8)^{2}+ (2 - 3)^{2}}[/tex]

dAD = [tex]\sqrt{(-5)^{2}+ (-1)^{2}}[/tex]

dAD = [tex]\sqrt{25 + 1}[/tex]

dAD = [tex]\sqrt{26}[/tex]

5.- Conclusion

The quadrilateral ABCD is a square because dAB = dBC = dCD = dDA