Respuesta :

The range of the equation is [tex]y>2[/tex]

Explanation:

The given equation is [tex]y=2(4)^{x+3}+2[/tex]

We need to determine the range of the equation.

Range:

The range of the function is the set of all dependent y - values for which the function is well defined.

Let us simplify the equation.

Thus, we have;

[tex]y=2 \cdot 4^{x+3}+2[/tex]

This can be written as [tex]y=2^{1+2(x+3)}+2[/tex]

Now, we shall determine the range.

Let us interchange the variables x and y.

Thus, we have;

[tex]x=2^{1+2(y+3)}+2[/tex]

Solving for y, we get;

[tex]x-2=2^{1+2(y+3)}[/tex]

Applying the log rule, if f(x) = g(x) then [tex]\ln (f(x))=\ln (g(x))[/tex], then, we get;

[tex]\ln \left(2^{1+2(y+3)}\right)=\ln (x-2)[/tex]

Simplifying, we get;

[tex](1+2(y+3)) \ln (2)=\ln (x-2)[/tex]

Dividing both sides by [tex]\ln (2)[/tex], we have;

[tex]2 y+7=\frac{\ln (x-2)}{\ln (2)}[/tex]

Subtracting 7 from both sides of the equation, we have;

[tex]2 y=\frac{\ln (x-2)}{\ln (2)}-7[/tex]

Dividing both sides by 2, we get;

[tex]y=\frac{\ln (x-2)-7 \ln (2)}{2 \ln (2)}[/tex]

Let us find the positive values for logs.

Thus, we have,;

[tex]x-2>0[/tex]

     [tex]x>2[/tex]

The function domain is [tex]x>2[/tex]

By combining the intervals, the range becomes [tex]y>2[/tex]

Hence, the range of the equation is [tex]y>2[/tex]