Respuesta :
Answer:
0.136m
Explanation:
Given
rh = 0.262m
m1 = 5.46 kg
m2 = 8.66 kg
td = 0.0525m
density, ρ= 5530 kg/m³
Calculating the moment of inertia of the new disk;
M1 = m1r²
M1 = 5.46 * 0.262²
M1 = 0.375 kg·m²
Calculating the moment of inertia of the rod
M2 = m2r²
M2 = 8.66 * (2 * 0.262)²/12
M2 = 0.198 kg·m²
Moment of inertia of the old wheel;
M3 = M1 * M2
M3 = 0.375 + 2 * 0.198
M3 = 0.771 kg·m²
Calculating Moment of Inertia of the disk
M4 = mr²/2
To get the mass of the disk, W
We'll need to calculate the mass from its volume V and density ρ
m = V * ρ
Where V = Area * Thickness
m = Area * Thickness * ρ
m = πr² * 0.0525 * ρ
m = 0.525ρπr²
So, M4 = 0.525ρπr² * r²/2
M4 = 0.2625ρπr⁴/2
Solving for r
r⁴ = M4/0.2625ρπ
M4 must equal M3 = 0.771
So, r⁴ = 0.771/0.2625ρπ/2
r⁴ = 0.771/(0.2625 * 5530 * 3.14/2)
r⁴ = 0.000338298667044
r = (0.000338298667044)^¼
r = 0.135620415830572
r = 0.136m --- Approximately
Answer: 0.203m
Explanation:
Given;
M1 = 5.46kg
R1 = 0.262m
M2 = 8.66kg
Tdisk (H) = 0.0525m
Density of disk (P3) = 5530kg/m^3
Mass of disk (M3)= ?
R3 = ?
Let Moment of inertia for new disk be Id and moment of inertia for old wheel be Iw.
Iw = Id .........(*)
Step 1: calculating moment of inertia for the old wheel.
Iw = Ihoop + 2* Irod............(**)
Ihoop = M1 * R1^2
= 5.46 * 0.262^2.
= 0.375kg.m^2 ................(1)
Irod = M2* L2^2/12
Where L2 = 2*R2 = 2*0.262 = 0.524m
Irod = 8.66 * 0.524^2/12 = 0.1981kg.m^2 ..............(2)
Substituting (1) & (2) into (**) we have;
Iw = 0.375 + (2*0.1981) = 0.7712kg.m^2.................(3)
step 2: Calculating moment of inertia for new disk.
Id = M3*R3^2/2 ..............(4)
Mass M3 of the disk can be derive from the density M3 = V*P3.......(5)
Where V = ΠR3^2*H .......(6)
Substitute (6) into (5) we have
M3 = (ΠR3^2*H)*P3
M3 = (ΠR3^2*0.0525)*P3.........(7)
Substitute M3 into (4) we have;
Id = [(ΠR3^2*0.0525)*P3]*R3^2/2
Id = ΠR3^4 * 0.0525 * 5530/2
Step 3: Solving for R3, the radius of disk.
R3^4 = 2Id/3.142*0.0525*5530
Since Id = Iw from (*)
R3 = [(2*0.7712)/(3.142*0.0525*5530)]^(1/4)
R3 = 0.203m