A very long solenoid of inner radius 4.25 cm creates an oscillating magnetic field B of the form B = B m a x cos ( ω t ) For this solenoid, B max = 0.00275 T and ω = 349 rad/s. What is the maximum value E max of the induced electric field at a perpendicular distance 1.85 cm from the axis of the solenoid?

Respuesta :

Answer:

Explanation:

Flux

Φ = B A

= πR²B

-dΦ / dt = -πR²dB/ dt

EMF = - πR².00275d.cos ( ω t )/ dt

EMF = ( πR².00275/ω) sin ω t

EMFmax = ( πR².00275/ω)

EMFmax = ∫ E dR , E is elecreic field at distance R from the axis

= 2πR X E

( πR².00275/ω) = 2πR X Emax

Emax = R x .00275/2ω

= 1.85 x 10⁻² x .00275 / (2 x 349)

= .7288 x 10⁻⁷ N/C  

= 7.288 x 10⁻⁸ N/C

Faraday's Law of Induction allows finding the result for the maximum electric field at a distance from the solenoid axis is:

        E₀ = 4.685 10⁻³ V/s  

 

Faraday's induction law says that the induced electromotive force is equal to minus the derived respect of time of the magnetic flux.

        EMF = [tex]- \frac{d \Phi }{dt}[/tex]  

The flow is

       Ф = B . A

Where the bold indicate vectros, EMF is the induced electromotive force, Ф the magnetic flux, B the magnetic field and A the area.

     

Indicates that the magnetic field has the form

      B = B₀ cos wt

With B₀ = 0.00275 T and w = 349 rad / s.

Solenoid area is constant, r= 4.25 cm.

      A = pi r²

Let's do the derivative.

     [tex]\frac{d \Phi }{dt } = A \frac{dB}{dt} \\\frac{d \Phi }{dt } = - A \ B_o \ w \ sin wt[/tex]

We substitute in the Faraday equation.

     EMF = A B₀ w sint wt

They ask the maximum EMF is when the sine function is maximum.

     sin wt  = 1.

     EMF₀ =  A B₀ w          (1)

Electric potential and electric field are related.

     V = - ∫ E. ds

The electric field is constant, it can leave the integral, the radius is the distance R = 1.85 cm.

      V = - E (2πR)              (2)

We equate the expressions 1 and 2.

     A B₀ w = E₀ 2π R

     [tex]E_o = \frac{A \ B_o \ w }{2\pi \ R} \\E_o = \frac{r^2 B_o w }{2 R}[/tex]

Let's calculate.

     E₀ = [tex]\frac{(4.25 \ 10^{-3})^2 \ 0.0275 349 }{2 \ 1.85 10^{-3} }[/tex]

     E₀ = 4.685 10⁻³   V/m

In conclusion using Faraday's induction Law we can find the result for the maximum electric field at a distance from the solenoid axis is:

        E₀ = 4.685  10⁻³  V/s

Learn more here:  https://brainly.com/question/24182112