Respuesta :
Your question can be interpreted in two ways, I will solve both you then take the one you mean.
[tex] \frac{6n-5p}{11t} =c \\ 6n-5p=11ct \\ 6n=11ct+5p \\ n= \frac{11ct+5p}{6} [/tex]
Alternatively,
[tex]6n- \frac{5p}{11t} =c \\ 66nt-5p=11ct \\ 66nt=11ct+5p \\ n= \frac{11ct}{66t} + \frac{5p}{66t} \\ n= \frac{1}{6} c+\frac{5p}{66t}[/tex]
[tex] \frac{6n-5p}{11t} =c \\ 6n-5p=11ct \\ 6n=11ct+5p \\ n= \frac{11ct+5p}{6} [/tex]
Alternatively,
[tex]6n- \frac{5p}{11t} =c \\ 66nt-5p=11ct \\ 66nt=11ct+5p \\ n= \frac{11ct}{66t} + \frac{5p}{66t} \\ n= \frac{1}{6} c+\frac{5p}{66t}[/tex]
Answer:
The simplified form for n is [tex]\frac{11tc+5p}{6}[/tex]
Step-by-step explanation:
We need to solve the given expression for the [tex]n[/tex]
Given expression is [tex]\frac{6n-5p}{11t}=c[/tex]
[tex]\frac{6n-5p}{11t}=c[/tex]
Multiply both the sides by 11t,
[tex]11t\times \frac{6n-5p}{11t}=11t\times c[/tex]
[tex]6n-5p=11tc[/tex]
Add both the sides by 5p
[tex]6n-5p+5p=11tc+5p[/tex]
[tex]6n=11tc+5p[/tex]
Divide both the sides by 6,
[tex]n=\frac{11tc+5p}{6}[/tex]
Therefore, the simplified form for n is [tex]\frac{11tc+5p}{6}[/tex]