Respuesta :
The total heat considering both the sensible and latent heat is expressed by ΔH = (m Cp ΔT)solid + (m ΔHv) + (m Cp ΔT)liquid.
Subsituting the data to the equation,
ΔH = (10 g *2.09 J/g K *25 K) + (10 g *80 cal/g *4.1858 J/cal) + (10 g* 4.18 J/gK * 90 K)
ΔH = 7633.14 Joules
Subsituting the data to the equation,
ΔH = (10 g *2.09 J/g K *25 K) + (10 g *80 cal/g *4.1858 J/cal) + (10 g* 4.18 J/gK * 90 K)
ΔH = 7633.14 Joules
Answer : The enthalpy change is, 6.2315 KJ
Solution :
The conversions involved in this process are :
[tex](1):H_2O(s)(-25^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(90^oC)[/tex]
Now we have to calculate the enthalpy change.
[tex]\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})][/tex]
where,
[tex]\Delta H[/tex] = enthalpy change = ?
m = mass of ice = 10.0 g
[tex]c_{p,s}[/tex] = specific heat of solid water = [tex]2.09J/g^oC[/tex]
[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]
n = number of moles of water = [tex]\frac{\text{Mass of water}}{\text{Molar mass of water}}=\frac{10g}{18g/mole}=0.55mole[/tex]
[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole
Now put all the given values in the above expression, we get
[tex]\Delta H=[10g\times 4.18J/gK\times (0-(-25))^oC]+0.55mole\times 6010J/mole+[10g\times 2.09J/gK\times (90-0)^oC][/tex]
[tex]\Delta H=6231.5J=6.2315kJ[/tex] (1 KJ = 1000 J)
Therefore, the enthalpy change is, 6.2315 KJ