Respuesta :

caylus
Hello,

answer D

A:y=(x+2)²-2 axis: x=-2 No
B:y=x²*4=(x-0)²-4 axis x=0 No
C: y=x²-2=(x-0)²-2 axis x=0 No

D:y=x²-4x+2=x²-4x+4-4+2=(x-2)²-2 axis x=2 Yes.

Answer:

Option 4 is the correct answer.

Step-by-step explanation:

There are four equations of a parabola given in the question and we have to find the equation for which axis of symmetry  is  x = +2

Since line of symmetry of a parabola passes through its vertex so will find - Vertex of all the equations.

(1)  [tex]y=x^{2}+4x-2[tex]

[tex]y=x^{2}+4x+4-6[/tex]

[tex]=(x+2)^{2}-6[/tex]

So vertex is ( -2, -6 )

(2) [tex]y=x^{2}-4=(x-0)^{2} -4[/tex]

Vertex is ( 0, -4 )

(3)  [tex]y=x^{2} -2[/tex]

[tex]y=(x-0)^{2} -2[/tex]

vertex is ( 0, -2 )

(4)  [tex]y=x^{2} -4x+2[/tex]

=[tex]x^{2} -4x+4-2[/tex]

=[tex](x-2)^{2}-2[/tex]

So vertex will be ( +2, -2 )

Out of all equations we find vertex of equation (4) is x=2 and y=-2, so line of symmetry will be x=2.

Option 4 is the correct answer.