Respuesta :
[tex](a+b)^n\\
\displaystyle
T_r=\binom{n}{r-1}a^{n-r+1}b^{r-1}\\\\
T_5=\binom{8}{5-1}x^{8-5+1}\cdot5^{5-1}\\
T_5=\binom{8}{4}x^4\cdot5^4\\
T_5=\dfrac{8!}{4!4!}\cdot x^4 \cdot5^4\\
T_5=\dfrac{5\cdot6\cdot7\cdot8}{2\cdot3\cdot4}\cdot x^4\cdot5^4\\
T_6=2\cdot7\cdot x^4\cdot5^5\\
T_6=43750x^4
[/tex]
Answer:
[tex]T_5=43750x^{4}[/tex]
Step-by-step explanation:
Given: [tex](x+5)^8[/tex]
It is binomial expansion. It has two term with power 8.
Formula:
If [tex](a+b)^n[/tex] then [tex]T_{r+1}=^nC_ra^^{n-r}b^r[/tex]
This is general formula of the expansion.
For fifth term, T₅
[tex]T_5=T_{r+1}[/tex]
So, r=4
[tex](x+5)^8[/tex]
Put r=4 and n=8, a=x, b=5 into formula and we get
[tex]T_5=^8C_4\cdot x^{8-4}\cdot 5^4[/tex]
[tex]T_5=\dfrac{8!}{4!\cdot 4!}\cdot x^{4}\cdot 625[/tex] [tex]\because ^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
[tex]T_5=70\cdot x^{4}\cdot 625[/tex]
[tex]T_5=43750x^{4}[/tex]
Hence, The fifth term of the given binomial is 43750x⁴