Respuesta :
f(2a)=35
35=(2a)^2-1
35=4a^2-1
minus 35 from both sidse
0=4a^2-36
facor out 4
0=4(a^2-9)
factor differece of 2 perfect squares
0=4(a-3)(a+3)
set to zero
a-3=0
a=3
a+3=0
a=-3
a=-3 or 3
35=(2a)^2-1
35=4a^2-1
minus 35 from both sidse
0=4a^2-36
facor out 4
0=4(a^2-9)
factor differece of 2 perfect squares
0=4(a-3)(a+3)
set to zero
a-3=0
a=3
a+3=0
a=-3
a=-3 or 3
The values of a function are gotten from the input variables
The values of a could be 3 or -3
We have:
[tex]f(x) = x^2 - 1[/tex]
Substitute 2a for x
[tex]f(2a) = (2a)^2 - 1[/tex]
Expand
[tex]f(2a) = 4a^2 - 1[/tex]
Substitute 35 for f(2a)
[tex]f(2a) = 4a^2 - 1 =35[/tex]
So, we have:
[tex]4a^2 - 1 =35[/tex]
Add 1 to both sides
[tex]4a^2 =35+1[/tex]
[tex]4a^2 =36[/tex]
Divide both sides by 4
[tex]a^2 = 9[/tex]
Take square roots
[tex]a = \±3[/tex]
Hence, the values of a could be 3 or -3
Read more about functions at:
https://brainly.com/question/21797759