Respuesta :
Answer:
Option C and D are the following equivalent to the function y = 3 cos x+ 2
Step-by-step explanation:
Given the function: y = 3 cos x+ 2
Using trigonometry identities:
For odd/ even identities:
- sin(-x) =-sin x
- cos(-x)= cos x
Complementary Angle identities:
- [tex]\sin x = \cos(\frac{\pi}{2}-x)[/tex]
- [tex]\cos x = \sin(\frac{\pi}{2}-x)[/tex]
Option A:
[tex]y =3\sin(x-\frac{\pi}{2})+2[/tex]
using trigonometry identity:
[tex]y =3\sin(-(\frac{\pi}{2}-x))+2= -3\sin(\frac{\pi}{2}-x)+2=-3\cos x+2[/tex]
Option B
[tex]y =-3\cos x -2[/tex]
Option C
[tex]y =3\sin(x+\frac{\pi}{2})+2[/tex] [sin(90 +x) = cos x ]
using trigonometry identity, [sin(90 +x) = cos x ];
[tex]y =3\cos x+2[/tex]
Option D :
[tex]y =3\cos(-x)+2[/tex]
using trigonometry identity:
[tex]y =3\cos x+2[/tex]
Therefore, the following option which is equivalent to y = 3 cos x+ 2 is C and D