Respuesta :
ANSWER
The turning point is
[tex](1,-3).[/tex]
EXPLANATION
The function given to us is
[tex]f(x) = (x - 1) ^{3} - 3[/tex]
At turning point,
[tex]f '(x) = 0[/tex]
So we need to differentiate the given function and equate it to zero.
We using the chain rule of differentiation, we obtain,
[tex]f '(x) =3 (x - 1) ^{2} [/tex]
We equate this to zero to obtain,
[tex]3 (x - 1) ^{2} = 0[/tex]
We divide through by 3.
[tex](x - 1) ^{2} = 0[/tex]
We solve for x to get,
[tex]x - 1 = 0[/tex]
[tex]x = 1[/tex]
We substitute this x-value in to the function to obtain the corresponding y-value of the turning point.
[tex]f(1) = (1- 1) ^{3} - 3[/tex]
[tex]f(1) = 0 - 3[/tex]
[tex]f(1) = - 3[/tex]
Therefore the turning point is
[tex](1,-3)[/tex]
C is the correct answer.
The turning point is
[tex](1,-3).[/tex]
EXPLANATION
The function given to us is
[tex]f(x) = (x - 1) ^{3} - 3[/tex]
At turning point,
[tex]f '(x) = 0[/tex]
So we need to differentiate the given function and equate it to zero.
We using the chain rule of differentiation, we obtain,
[tex]f '(x) =3 (x - 1) ^{2} [/tex]
We equate this to zero to obtain,
[tex]3 (x - 1) ^{2} = 0[/tex]
We divide through by 3.
[tex](x - 1) ^{2} = 0[/tex]
We solve for x to get,
[tex]x - 1 = 0[/tex]
[tex]x = 1[/tex]
We substitute this x-value in to the function to obtain the corresponding y-value of the turning point.
[tex]f(1) = (1- 1) ^{3} - 3[/tex]
[tex]f(1) = 0 - 3[/tex]
[tex]f(1) = - 3[/tex]
Therefore the turning point is
[tex](1,-3)[/tex]
C is the correct answer.
Answer: C. (1, -3)
Step-by-step explanation:
Given function,
[tex]f(x) = (x - 1)^3 - 3[/tex] -------(1)
By differentiating the above equation with respect to x,
[tex]f'(x) = 3(x - 1)^2 - 0[/tex]
[tex]f'(x) = 3(x - 1)^2[/tex]
At the turning point of the function f(x),
f'(x) = 0
⇒ [tex]3(x - 1)^2 = 0[/tex]
⇒ [tex](x - 1)^2 = 0[/tex]
⇒ [tex]x - 1 = 0[/tex]
⇒ [tex]x = 1[/tex]
By substituting this value in equation (1),
We get,
f(x) = - 3
Hence, the turning point of the function f(x) is (1,-3).
⇒ Option C is correct.