Respuesta :

Answer: The minimum value of C is 46.

Step-by-step explanation:

Since, Here, We have to find out Min C = 7x+8y

Given the constraints are [tex]2x+y\geq 8[/tex] -------(1)

[tex]x+y \geq 6[/tex]   ------------- (2)

[tex]x \geq 0[/tex], [tex]y \geq 0[/tex]  -------- (3)

Since, For equation 1) x-intercept, (4, 0) and y-intercept (0,8)

And, [tex]2\times 0+0\geq 8[/tex]⇒[tex]0\geq 8[/tex] ( false)

Therefore the area of line 1) does not contain the origin.

For equation 2) x-intercept, (6, 0) and y-intercept (0,6)

And, [tex] 0+0\geq 6[/tex]⇒[tex]0\geq 6[/tex] ( false)

Therefore the area of line 2) does not contain the origin.

Thus after plotting the constraints 1) 2) and 3) we get Open Shaded feasible region AEB ( Shown in below graph)

At A≡(0,8) , C= 64

At E≡(2,4),  C= 46

At B≡(6,0),  C= 42

Thus at B, C is minimum, And its minimum value = 42


Ver imagen parmesanchilliwack

Answer:

The right answer is B. 42

edgen 2020