Respuesta :
Answer:
(1) The probability that the sample percentage indicating global warming is having a significant impact on the environment will be between 64% and 69% is 0.3674.
(2) The two population percentages that will contain the sample percentage with probability 90% are 0.57 and 0.73.
(3) The two population percentages that will contain the sample percentage with probability 95% are 0.55 and 0.75.
Step-by-step explanation:
Let X = number of senior professionals who thought that global warming is having a significant impact on the environment.
The random variable X follows a Binomial distribution with parameters n = 100 and p = 0.65.
But the sample selected is too large and the probability of success is close to 0.50.
So a Normal approximation to binomial can be applied to approximate the distribution of p if the following conditions are satisfied:
- np ≥ 10
- n(1 - p) ≥ 10
Check the conditions as follows:
 [tex]np= 100\times 0.65=65>10\\n(1-p)=100\times (1-0.65)=35>10[/tex]
Thus, a Normal approximation to binomial can be applied.
So, Â [tex]\hat p\sim N(p, \frac{p(1-p)}{n})=N(0.65, 0.002275)[/tex].
(1)
Compute the value of [tex]P(0.64<\hat p<0.69)[/tex] as follows:
[tex]P(0.64<\hat p<0.69)=P(\frac{0.64-0.65}{\sqrt{0.002275}}<\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{0.69-0.65}{\sqrt{0.002275}})[/tex]
               [tex]=P(-0.20<Z<0.80)\\=P(Z<0.80)-P(Z<-0.20)\\=0.78814-0.42074\\=0.3674[/tex]
Thus, the probability that the sample percentage indicating global warming is having a significant impact on the environment will be between 64% and 69% is 0.3674.
(2)
Let [tex]p_{1}[/tex] and [tex]p_{2}[/tex] be the two population percentages that will contain the sample percentage with probability 90%.
That is,
[tex]P(p_{1}<\hat p<p_{2})=0.90[/tex]
Then,
[tex]P(p_{1}<\hat p<p_{2})=0.90[/tex]
[tex]P(\frac{p_{1}-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{p_{2}-p}{\sqrt{\frac{p(1-p)}{n}}})=0.90[/tex]
[tex]P(-z<Z<z)=0.90\\P(Z<z)-[1-P(Z<z)]=0.90\\2P(Z<z)-1=0.90\\2P(Z<z)=1.90\\P(Z<z)=0.95[/tex]
The value of z for P (Z < z) = 0.95 is
z = 1.65.
Compute the value of [tex]p_{1}[/tex] and [tex]p_{2}[/tex] Â as follows:
[tex]-z=\frac{p_{1}-p}{\sqrt{\frac{p(1-p)}{n}}}\\-1.65=\frac{p_{1}-0.65}{\sqrt{\frac{0.65(1-0.65)}{100}}}\\p_{1}=0.65-(1.65\times 0.05)\\p_{1}=0.5675\\p_{1}\approx0.57[/tex] Â Â Â Â Â Â Â Â [tex]z=\frac{p_{2}-p}{\sqrt{\frac{p(1-p)}{n}}}\\1.65=\frac{p_{2}-0.65}{\sqrt{\frac{0.65(1-0.65)}{100}}}\\p_{2}=0.65+(1.65\times 0.05)\\p_{1}=0.7325\\p_{1}\approx0.73[/tex]
Thus, the two population percentages that will contain the sample percentage with probability 90% are 0.57 and 0.73.
(3)
Let [tex]p_{1}[/tex] and [tex]p_{2}[/tex] be the two population percentages that will contain the sample percentage with probability 95%.
That is,
[tex]P(p_{1}<\hat p<p_{2})=0.95[/tex]
Then,
[tex]P(p_{1}<\hat p<p_{2})=0.95[/tex]
[tex]P(\frac{p_{1}-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n}}}<\frac{p_{2}-p}{\sqrt{\frac{p(1-p)}{n}}})=0.95[/tex]
[tex]P(-z<Z<z)=0.95\\P(Z<z)-[1-P(Z<z)]=0.95\\2P(Z<z)-1=0.95\\2P(Z<z)=1.95\\P(Z<z)=0.975[/tex]
The value of z for P (Z < z) = 0.975 is
z = 1.96.
Compute the value of [tex]p_{1}[/tex] and [tex]p_{2}[/tex] Â as follows:
[tex]-z=\frac{p_{1}-p}{\sqrt{\frac{p(1-p)}{n}}}\\-1.96=\frac{p_{1}-0.65}{\sqrt{\frac{0.65(1-0.65)}{100}}}\\p_{1}=0.65-(1.96\times 0.05)\\p_{1}=0.552\\p_{1}\approx0.55[/tex] Â Â Â Â Â Â Â Â [tex]z=\frac{p_{2}-p}{\sqrt{\frac{p(1-p)}{n}}}\\1.96=\frac{p_{2}-0.65}{\sqrt{\frac{0.65(1-0.65)}{100}}}\\p_{2}=0.65+(1.96\times 0.05)\\p_{1}=0.748\\p_{1}\approx0.75[/tex]
Thus, the two population percentages that will contain the sample percentage with probability 95% are 0.55 and 0.75.