Respuesta :

The first rule you need to know is

[tex](a^b)^c=a^{bc}[/tex]

So, you have

[tex]\dfrac{(x^{25})^{-6}}{(x^{-3})^{48}}=\dfrac{x^{25\cdot(-6)}}{x^{-3\cdot 48}}=\dfrac{x^{-150}}{x^{-144}}[/tex]

The second rule you need to know is

[tex]\dfrac{a^b}{a^c}=a^{b-c}[/tex]

So, you have

[tex]\dfrac{x^{-150}}{x^{-144}}=x^{-150-(-144)}=x^{-150+144}=x^{-6}[/tex]

Answer:

- 6

Step-by-step explanation:

(x²⁵)⁻⁶/(x⁻³)⁴⁸ =

= (x²⁵ˣ⁻⁶)/(x⁻³ˣ⁴⁸)

= (x ⁻¹⁵⁰)/(x ⁻¹⁴⁴)

= x ⁻¹⁵⁰ ⁻⁽⁻¹⁴⁴⁾

= x ⁻¹⁵⁰⁺¹⁴⁴

= x ⁻⁶