contestada

Two scales on a nondigital voltmeter measure voltages up to 20.0 and 30.0 V, respectively. The resistance connected in series with the galvanometer is 1680 Ω for the 20.0-V scale and 2930 Ω for the 30.0-V scale. Determine the coil resistance.

Respuesta :

Answer:

Resistance of the circuit is 820 Ω

Explanation:

Given:

Two galvanometer resistance are given along with its voltages.

Let the resistance is "R" and the values of voltages be 'V' and 'V1' along with 'G' and 'G1'.

⇒ [tex]V=20\ \Omega,\ V_1=30\ \Omega[/tex]

⇒ [tex]G=1680\ \Omega,\ G_1=2930\ \Omega[/tex]

Concept to be used:

Conversion of galvanometer into voltmeter.

Let [tex]G[/tex] be the resistance of the galvanometer and [tex]I_g[/tex] the maximum deflection in the galvanometer.

To measure maximum voltage resistance [tex]R[/tex] is connected in series .

So,

[tex]V=I_g(R+G)[/tex]

We have to find the value of [tex]R[/tex] we know that in series circuit current are same.

For [tex]G=1680[/tex]                                    For [tex]G_1=2930[/tex]

⇒ [tex]I_g=\frac{V}{R+G}[/tex]   equation (i)                ⇒ [tex]I_g=\frac{V_1}{R+G_1}[/tex] equation (ii)

Equating both the above equations:

⇒ [tex]\frac{V}{R+G} = \frac{V_1}{R+G_1}[/tex]

⇒ [tex]V(R+ G_1) = V_1 (R+G)[/tex]

⇒ [tex]VR+VG_1 = V_1R+V_1G[/tex]

⇒ [tex]VR-V_1R = V_1G-VG_1[/tex]

⇒ [tex]R(V-V_1) = V_1G-VG_1[/tex]

⇒ [tex]R =\frac{V_1G-VG_1}{(V-V_1)}[/tex]

⇒ Plugging the values.

⇒ [tex]R =\frac{(30\times 1680) - (20\times 2930)}{(20-30)}[/tex]

⇒ [tex]R =\frac{(50400 - 58600)}{(-10)}[/tex]

⇒ [tex]R=\frac{-8200}{-10}[/tex]

⇒ [tex]R=820\ \Omega[/tex]

The coil resistance of the circuit is 820 Ω .