contestada

Block B is attached to a massless string of length L = 1 m and is free to rotate as a pendulum. The speed of block A after the collision is half its speed before the collision. Block B was at rest before the collision. The mass of block A is 7 kg and the mass of block B is 2 kg. What is the minimum initial speed (in m/s) that block A must have for block B to swing through a complete vertical circle?

Respuesta :

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The minimum velocity of A is  [tex]v_A= 4m/s[/tex]

Explanation:

From the question we are told that

    The length of the string is  [tex]L = 1m[/tex]

     The initial speed of block A is [tex]u_A[/tex]

     The final speed of block A is  [tex]v_A = \frac{1}{2}u_A[/tex]

      The initial speed of block B is [tex]u_B = 0[/tex]

      The mass of block A  is  [tex]m_A = 7kg[/tex]  gh

      The mass of block B is  [tex]m_B = 2 kg[/tex]

According to the principle of conservation of momentum

       [tex]m_A u_A + m_B u_B = m_Bv_B + m_A \frac{u_A}{2}[/tex]

Since block B at initial is at rest

       [tex]m_A u_A = m_Bv_B + m_A \frac{u_A}{2}[/tex]

      [tex]m_A u_A - m_A \frac{u_A}{2} = m_Bv_B[/tex]

          [tex]m_A \frac{u_A}{2} = m_Bv_B[/tex]

  making [tex]v_B[/tex] the subject of the formula

             [tex]v_B =m_A \frac{u_A}{2 m_B}[/tex]

Substituting values

               [tex]v_B =\frac{7 u_A}{4}[/tex]  

This [tex]v__B[/tex] is the velocity at bottom of the vertical circle just at the collision with mass A

Assuming that block B is swing through the vertical circle(shown on the second uploaded image ) with an angular velocity  of [tex]v__B'[/tex] at  the top of the vertical circle  

 The angular centripetal acceleration  would be mathematically represented

                   [tex]a= \frac{v^2_{B}'}{L}[/tex]

Note that  this acceleration would be toward the center of the circle

      Now the forces acting at the top of the circle can be represented mathematically as

         [tex]T + mg = m \frac{v^2_{B}'}{L}[/tex]

    Where T is the tension on the string

  According to the law of energy conservation

The energy at  bottom of the vertical circle   =  The energy at the top of

                                                                                the vertical circle

   This can be mathematically represented as

                 [tex]\frac{1}{2} m(v_B)^2 = \frac{1}{2} mv^2_B' + mg 2L[/tex]

From above  

                [tex](T + mg) L = m v^2_{B}'[/tex]

Substitute this into above equation

             [tex]\frac{1}{2} m(\frac{7 v_A}{4} )^2 = \frac{1}{2} (T + mg) L + mg 2L[/tex]  

             [tex]\frac{49 mv_A^2}{16} = \frac{1}{2} (T + mg) L + mg 2L[/tex]

          [tex]\frac{49 mv_A^2}{16} = T + 5mgL[/tex]

The  value of velocity of block A needed to cause B be to swing through a complete vertical circle is would be minimum when tension on the string due to the weight of B is  zero

        This is mathematically represented as

                      [tex]\frac{49 mv_A^2}{16} = 5mgL[/tex]

making  [tex]v_A[/tex] the subject

            [tex]v_A = \sqrt{\frac{80mgL}{49m} }[/tex]

substituting values

          [tex]v_A = \sqrt{\frac{80* 9.8 *1}{49} }[/tex]

              [tex]v_A= 4m/s[/tex]

     

Ver imagen okpalawalter8
Ver imagen okpalawalter8