Answer: a) (1008.34,1019.658) b) (1009.24,1018.76)
Step-by-step explanation:
Since we have given that
n = 75
mean = 1014 hours
Standard deviation = 25 hours
At 95% two sided , z = 1.96
So, confidence interval would be
[tex]\bar{x}\pm z\dfrac{\sigma}{\sqrt{n}}\\\\=1014\pm 1.96\dfrac{25}{\sqrt{75}}\\\\=1014\pm 5.658\\\\=(1014-5.658,1014+5.658)\\\\=(1008.34,1019.658)[/tex]
(b) Construct a 95% lower confidence bound on the mean life.
z = 1.65
So, confidence interval would be
[tex]\bar{x}\pm z\times \dfrac{\sigma}{\sqrt{n}}\\\\=1014\pm 1.65\times \dfrac{25}{\sqrt{75}}\\\\=1014\pm 4.76\\\\=(1014-4.76,1014+4.76)\\\\=(1009.24,1018.76)[/tex]
Hence, a) (1008.34,1019.658) b) (1009.24,1018.76)